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Abstract- A primary constraint in wireless sensor 

networks (WSNs) is obtaining reliable and prolonged 

network operation with power-limited sensor nodes. Most 

of the approaches to the energy constraint problem focus 

mainly on the WSN and its architecture without 

analyzing the underlying process for the depletion of 

battery levels of individual nodes and consequent 

reduction in network lifetime: the variation of sensing 

environment in the deployment region. We study the 

energy model of a WSN as interdependence between the 

environmental variation and its impact on the energy 

consumption at individual nodes. This paper motivates 

the need for modeling energy variation in WSNs along 

with the environment in the deployment region. Defining 

network energy as the sum of residual battery energy at 

nodes, we provide an analytical framework for the 

dependence of node energy and sensitivity of network 

energy as a function of environmental variation and 

reliability parameters. Using a neural network based 

approach, we perform adaptive density control and show 

how reliability requirements and environment variation 

influences the rate of change of network energy.  

 

I. INTRODUCTION 

 
A key challenge in energy optimization for 

densely deployed WSNs is selecting the set of sensors 

that remain ‘awake’ for a given cycle. Some of the 

criteria developed for choosing the set of active nodes 

are environment probing [1] to determine active 

neighbors, k-coverage [2] and connectivity-based 

participation in multi-hop network [3]. While these 

approaches target the WSN architecture and individual 

node lifetimes, they overlook the dependence of the 

battery variation on the variation in the sensed 

environment. Since nodes typically report data to the 

base station when the sensed data exhibits large 

variance, a rapidly changing environment influences 

the energy consumption at nodes due to higher number 

of transmissions from nodes to base station/other 

nodes. Hence, it is essential to model the WSN system 

with interdependence between the WSN and the 

environment. This kind of a system modeling approach 

reflects the sensitivity of network lifetime to the pattern 

of variation in the environment with the help of bifurcation 

parameters of the environment model.  

In this paper, we describe a neural-network 

approach for density control based on the interdependence 

between environment variation and node energy. Our first 

objective is to develop an approach that takes into account 

reliability of the sensing operation. The goal is to vary the 

density of ‘awake’ nodes according to a user-defined 

reliability requirement. For instance, a higher reliability 

requirement requires a higher density of nodes in the 

deployment region that are continuously sensing and 

transmitting to a central base station (BS) that acts as a 

sink. The second objective is to account for variation of 

environment in parts of the deployment region. Since some 

areas of the deployment region may exhibit different 

environment variations, the rate of reporting data from 

nodes to BS should allow for adaptive density control in 

different areas of the deployment region. Specifically, we 

use the Boltzmann learning rule to choose the set of active 

sensors for a given sensing cycle. Our scheme incorporates 

features of reliability by providing means to increase the 

density of active sensors and/or increasing the rate of 

reporting sensed data to the base station (BS).  

Approaches from neural networks (NN) have 

been widely used in WSNs for routing, fault recognition 

and modeling [4-7]. Recent research on specific WSN 

applications has exposed the impact of environment 

modeling on the WSN performance parameters [8]. In [8], 

the authors study the data gathering problem, in which 

they model the physical phenomena being sensed as a 

system of partial differential equations and have sensors 

transmit estimates of data rather than the raw data. Our 

work differs in that we develop the WSN energy model by 

taking into account the environment variation and the 

dependence of node energy change on this variation. We 

then use the Boltzmann rule to train the BS about the 

environment variation, so that it can predict the sensed 

data values and reduce the energy consumption involved in 

transmission of data from nodes to BS. It does this by 

taking into account the desired reliability constraints of the 

sensing operation and then performs adaptive density 

control.  

The rest of this paper is organized as follows: 

Section 2 describes the adaptation of the Boltzmann 



learning algorithm for WSNs by taking into account 

reliability requirements of the sensing operation. In 

section 3, we develop an analytical model for the 

environment variation and its influence on node 

energy. Section 4 describes the use of the Boltzmann 

rule in this framework to determine the density of 

nodes for the given reliability requirements. Section 5 

presents the results of numerical simulation of the 

proposed energy model. Section 6 concludes the paper 

and presents directions for future work. 

 

II. ADAPTATION OF THE BOLTZMANN LEARNING RULE 

FOR ADAPTIVE DENSITY CONTROL 

 
Preliminaries: We assume a dense WSN of stationary, 

homogenous and power-limited nodes, deployed for 

continuous sensing. The nodes report sensed data to the 

BS with the help of direct communication links 

between nodes and the BS. The approach we take to 

integrate the Boltzmann machine [9] with a WSN can 

be detailed as follows. 

We assume that the nodes in the WSN are in 

one of the following two states: visible or hidden. The 

visible/hidden state indicates the state of the transceiver 

in individual nodes, and thereby whether the node is 

‘visible’ to the BS in terms of its ability to 

transmit/receive data to/from the BS. Studies of energy 

consumption in wireless sensor nodes indicate that the 

transceiver energy consumption is an order of 

magnitude higher than that of other components at a 

node. To facilitate further energy savings, within each 

of the visible/hidden states, a node can be either in the 

‘0’ or ‘1’ modes which signifies the on/off states of the 

various components that make up the wireless sensor 

node. Thus at any given instant during the network 

operation, a node can be in one of the following 

energy-saving states: visible-0 (V0), visible-1(V1), 

hidden-0 (H0), hidden-1 (H1). The description of each 

of these states is as follows: 

V1 (visible transmit): transceiver, sensors and data 

processor on. 

V0 (visible receive): transceiver and data processor on 

H1 (hidden sense): only transducer/sensor on 

H0 (hidden sleep): all components off 

We use the energy model developed in [10] to calculate 

the energy consumption of nodes in each of these 

states. 

Boltzmann learning rule: The aim of the Boltzmann 

learning rule-based network density control is to obtain 

reliable operation while prolonging network lifetime. 

We do this by adaptively learning the variation of the 

environment and minimizing the amount of 

transmission-related energy expenditure at the nodes. 

The network goes through two distinct phases: 

training/clamped phase and the trained/free-running 

phase. The nodes enter V1, V0, H1 or H0 states in the 

training and trained phase as follows: 

Training phase: 

V1: Initially, all nodes are in the V1 state. Nodes 

continuously gather and transmit data to the BS. Most real-

world systems such as temperature variations, humidity 

and light variations follow an oscillatory pattern with 

diurnal, seasonal or daily variations. WSNs deployed to 

sense such parameters can exploit this pattern of variation 

with external and parametric noise and the bifurcation 

parameters. The BS learns the pattern of environment 

variation from this data. Since the data collected follows 

an oscillatory nature of variation, the BS decides to stop 

data collection from nodes in the training phase when it 

begins to observe the identical patterns of data collected, 

for e.g., photodetectors measuring the amount of light 

incident on an area at certain times of the day on 

consecutive days. The BS then instructs the nodes to enter 

the trained/free-running phase. 

Trained/free-running phase: 

V0: In order to reduce the number of transmissions from 

the nodes to the BS and thereby conserve battery energy, 

the nodes report data only when the difference between the 

data sensed in the current cycle differs from that in the 

previous cycle by a value that exceeds a certain threshold. 

This threshold is determined by the user demand for 

reliability, and is known as the reliability factor γ. The BS 

instructs γ % of nodes to enter the visible-receive (V0) 

mode, while the other nodes enter the hidden mode such 

that the density of ‘awake’ nodes satisfies the user 

requirements of reliability. The highest reliability is 

obtained when all nodes are in the V1 state and 

continuously reporting data to the BS. The data obtained 

by the BS in the V1 training phase is retrieved for analysis 

and prediction in the trained phase. To this end, the BS 

then uses prediction functions to evaluate the data values 

sensed by the nodes across the network and broadcasts 

these values to the nodes. Nodes compare the predicted 

values received in the BS broadcast message with the 

sensed value obtained in the previous cycle. If the 

difference fails the reliability requirement i.e. exceeds the 

threshold, the nodes enter the V1 mode and transmit the 

sensed value to the BS. The BS can thus fine tune its 

prediction algorithm to better reflect the changes in the 

sensed environment in the whole or part of the deployment 

region depending upon the number of nodes who enter the 

V1 training phase again from the V0 trained phase. Thus 

we see that the reliability factor controls not only the 

density of awake nodes but also the rate of reporting and 

thereby the energy consumption of nodes. A higher 

reliability requirement for the sensing operation implies a 

smaller threshold, which can be rapidly exceeded due to 

faster variation of the sensing environment in the 

deployment region.  

H1 and H0: These states constitute the hidden mode of the 

learning process. The amount of time spent in the hidden 



mode is inversely proportional to the time spent by the 

network in the visible/training mode. This is because, a 

larger duration of the training phase implies a complex 

pattern of environment variation which requires longer 

time for the BS to learn and develop prediction 

functions for them. Hence, we program the nodes for 

shorter hidden mode intervals so that the WSN can 

continue to reliably sense the environment. 

The nodes instructed to enter the hidden mode 

first the H0 (hidden-off mode) for γ % of the hidden 

mode duration and then switch into the H1 mode for 

the remaining duration of the hidden mode. This is 

done so that when the nodes enter the visible-receive 

(V0) mode again after leaving the hidden mode, the 

data values sensed by the sensors in the H1 mode can 

be used as the latest reference with which to compare 

the BS prediction 

Assumptions: 

Since the accuracy of the Boltzmann learning 

rule-based density control algorithm relies on the 

accuracy of the prediction algorithms and 

approximating functions at the BS, we assume that the 

BS has superior processing capacity and is not power-

limited like the nodes in the WSN. Nodes have buffer 

space to store data values obtained in the previous 

cycle and possess data processors with comparator 

algorithms. The clocks at individual nodes are 

synchronized with one another and the BS to achieve 

correct hidden mode/visible mode transitions. The 

communications links are assumed to be error-free. 

The only source of error is the error in the sensed data 

at nodes, which reflects as an increase in the energy 

consumption when the nodes perform comparisons 

with the BS’s predicted values and find that the 

difference fails the reliability requirement. 

.  

III. ANALYTICAL FRAMEWORK OF THE MODEL 

A. Training phase/Clamped phase 

We model the environment by the Van der Pol 

system of equations. Van der Pol equations are widely 

used to model oscillatory equations in systems such as 

electric circuits and population dynamics. The choice 

of the equations used to model the environment 

variation depends on the sensed environment. As we 

shall show in this section, the choice of the equations 

used to model the environment bears no influence on 

the energy model, thereby reducing the model to a set 

of equations with bifurcation parameters and noise in 

the sensed data. However, the bifurcation parameters of 

the system model describing the environment affect the 

stability of the system and can be used to design the 

length of the energy saving states within a cycle.  

The model for the rate of change of 

environment is given by the noisy Van der Pol equation 

[11] in x as a function of time. The node energy level is 

given by  y, whose rate of change is proportional to the rate 

of change of the environment by a factor p, which we call 

as the dependence function and also to the residual node 

energy at that time. 

( ) ( ) '2'' 1 01 1 2 2
x x x x     + + + − + =   (1) 

'y y px = − −      (2) 

where,   and   are the bifurcation parameters, 
1 1

   and 

2 2
  denote the external and parametric noise, ε is the 

energy per bit per node [10].  

Constraint: We evaluate this environment variation vs 

node-energy variation model subject to a reliability 

constraint γ. The intuition behind the constraint function is 

this: for prolonged network operation, we require that the 

reliability requirement should not require the nodes to 

remain in the V1 (all-awake) mode at all times, since this 

causes rapid energy depletion and decrease in network 

lifetime. Also, the rate of change of the sensing 

environment should be less than the rate of change of 

battery level at the nodes to reduce the number of 

transmissions at nodes. Taking the product of these 

constraints, we introduce the reliability constraint for the 

WSN as follows: the product of the reliability requirement 

and the rate of change of the sensing environment should 

be proportional and less than or equal to the square of the 

rate of change of node energy. This constraint ensures that 

the system remains stable by providing a means by which 

the WSN trains the BS reliably according to the rate of 

change in the environment model.  
2

' 'x ky          (3) 

Using the Lagrangian to find the extrema of (1) subject to 

the constraint posed by (3), the optimization function can 

be written as 

( , , ) ( , ) ( , )x y f x y g x y  = +       (4) 

Where the  objective function f(x,y) and the constraint 

function g(x,y) are as follows 

( )( ) ( )
2

( , ) '' ' / 1 ' ' /f x y x y y p x y y p   = + − + − + − + 
 

 (5) 

2
( , ) ' 'g x y x ky= −         (6) 

To find the extrema of the function, we obtain the partial 

derivatives of (4) and equating them to zero we get, 
2

' ' /x ky =         (7) 

Assuming that the higher partial derivatives tend to zero, 

we obtain 

( ) ( )
2

' ' 1 0y y y





+ − + =       (8)  

To find the solutions of (8), since / 0   ,  

Case 1) ( )
2

' 0y = ,     0
dy

y px
dt

 =  = − −     (9) 

Battery level is a function of environment variation and 

node energy consumption. 



Case 2) ( )' 1 0y y + − + = ,   ' 1y y = + +                 

(10) 

But 'y y px = − −  (from 1),       

( )2 1 /x p = − +               (11) 

Solving the differential equation in (9) to obtain y, 

( )10
t

y c e = − +              (12) 

where, c0 is a constant of integration. 

From (11),  ( )2 1px = − +  

Let ( ) ,p x px=  thus the extremum for the objective 

function are 

( ) ( ) ( )( ), 2 1 / , 10
t

x y p c e = − + − +            (13) 

Thus, the choice of the system of equations used to 

describe the environment does not influence the energy 

model. The dependence function p which describes the 

dependence of node energy on environment variation is 

used in the calculation of weights to decide the node 

states. 

The objective function f(x,y) evaluated at this 

extremum is  

( ) ( ), 2 1 /f x y p = +                            (14) 

which is a function of the dependence p of node energy 

on the environmental variation. 

 
B. Trained phase/ Free-running phase 

In the free-running phase, the BS uses the data 

acquired during the training phase to reduce the 

number of transmissions from the nodes to the BS. The 

BS broadcasts the predicted values to the visible nodes, 

which in turn match it with their sensed values. If the 

difference between the received prediction and sensed 

data exceeds a threshold, i.e. fails the reliability 

requirement, the visible nodes enter the visible transmit 

mode where they broadcast the sensed data to the BS. 

At the end of the free-running phase, the BS increases 

the density of visible-receive nodes for the next free-

running cycle. This process goes on until the BS error 

converges to less than the threshold set at the nodes. If 

the procedure fails to converge until the point where 

the density of visible node equals the total density of 

nodes in the network, the BS initiates the training 

phase over again. The system can thus be modeled as 

follows [12]: 

( ) ( )
( )( )

'

2
' 11 1 2 2

'

x z

z x x z

y c y px x

     

 

=

= − + − − −

= − − −

           (15) 

Proceeding similar to the training phase, the value of 

the objective function at the extremum is  

( ) 2
,f x y p c= .             (16) 

This shows that the battery level is a function of i. 

reliability, ii. dependence of node energy variation on 

environment variation and iii. energy required per bit per 

node. 

 

IV. CALCULATION OF NODE WEIGHTS FOR DENSITY 

CONTROL 

 
In this section, we illustrate the computation 

performed at the BS to determine the set of visible nodes 

for the next trained phase. The goal of the weight 

computation process is to balance the rate of energy 

consumption across the network. At the end of a trained 

phase, it assigns the nodes with lowest weights (lowest rate 

of change of battery energy) to enter the visible mode. The 

BS calculates the weight of nodes based on the number of 

transmissions from the node and the history of modes it 

has been in for the previous cycles.  

A.  Training phase  

We show that the weight of a node is the training 

phase is only a function of time. The proof leading to the 

calculation of node weights is shown in the Appendix. 

Since the weight of a node is proportional to the rate of 

change of battery level at that node, from (12), we get, 

( )10
t

w k c eci = − +       (17) 

where the subscript i denotes the ith node. 

Adapting the Boltzmann rule for weight 

calculation [9] and equating the node weights from (17), 

we get ( ) ( )1 2 / 40
NT

t
w k c eci  = − + =     (18) 

This shows that the weights are only a function of time in 

the training phase. The intuition behind this is that in the 

longer the training phase, it implies a complex pattern of 

environment variation in the deployment region. This 

requires more number of transmissions from the nodes to 

the BS for the BS to learn about the environment and 

hence the weights of a node are only a function of time. 

 

B. Trained phase  

Using the method as above, we show the weight of a node 

in the trained phase is 

( )
2 2 1

0
| |1 1 2

N NN T bb

w s s k pci i j i
    

 
 
 

−
−

 = − = = −
= =

       (19) 

This shows that the weights are only a function of the 

reliability parameter γ. This is because, in the trained 

phase, the energy expenditure at a node due to 

communication with the BS is influenced by whether the 

difference between the BS predicted value and the sensed 

value stored in the node exceeds  γ.  

 



                                        Training phase            

Fig.1 Rate of change of network energy as a function of dependence 

of node energy on environmental model in the training phase. The 
constant dependence results in lowest rate of change of network 

energy. 

V. RESULTS 

 
In this section, we obtain the simulation results of the 

Boltzmann learning-rule based WSN. We simulate a 

network of 100 nodes randomly scattered across a 

square deployment region of side 20 meters. Defining 

network energy as the sum of the battery energy of all 

nodes in the deployment region, we plot the rate of 

change of variation of the network energy in Ampere-

hours/kilo-hours) as a function of time in kilo-hours for 

different a. dependence models of battery energy on 

environmental variation in the training phase (Fig.1) 

and b. reliability parameters in the trained phase 

(Fig.2).  

 

Training phase: Fig. 1 shows the variation of the 

network energy as a function of the dependence model 

between the node energy and the environment variation 

model in the training phase. For this study, we use a 

reliability requirement of 0.5 for a network of 100 

nodes. We see that when this dependence assumes the 

form of a quadratic polynomial, the rate of change of 

network energy is the highest compared to when the 

dependence is a constant. This sensitivity analysis to p 

illustrates the energy- conserving nature of the free-

running trained phase where the BS optimizes the 

density of visible nodes to suit the reliability 

requirements. The rate of change of network energy 

approaches zero when the BS’s prediction error 

matches the reliability requirement and the network  

                Trained phase 
Figure 2. Rate of change of network energy as a function of time for 

different reliability requirements. The reliability requirements dictate the 

density of visible nodes, which in turn affects the rate of change of 
network energy in the WSN. 

  

 

enters the trained phase. A comparison of the rate of 

change of network energy in training (fig. 1) and trained 

phase (fig. 2) shows that this transition to the trained phase 

causes the gradient of the network energy variation to be 

less than that in the training phase. 

Trained phase: In fig. 2, we model the dependence 

function p, as an exponential function of the environment 

change parameter.  The sensitivity analysis to reliability 

requirements shows that the rate of network energy varies 

with the desired reliability parameter γ. For high values of 

reliability of the sensing operation, the rate of change of 

network energy is higher. This is because, for higher γ, the 

BS increases the density of nodes in the visible mode, the 

density of nodes in the hidden-sense mode and also the 

rate of reporting, thus causing faster network energy 

depletion. We also model the case, where all the nodes are 

sensing, processing and transmitting for the entire duration 

of the deployment, i.e. all nodes are in the visible-transmit 

mode for γ=1. As seen from Fig.1, this reliability 

requirement causes higher variation of network lifetime 

than for lesser values of γ. For γ =0.1, which represents the 

case where the node energy has minimal dependence on 

the environment variation due to majority of the nodes 

always being in the hidden mode, the rate of change of 

network lifetime is much lower. For instance, for γ=1, the 

rate of change of network energy for the interval between 

the first 50 – 80 hours in the trained phase is higher by an 

order of magnitude than for γ =0.1.  

 



VI. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we presented an energy model 

for wireless sensor networks by taking into account 

reliability requirements of the sensing operation and 

the impact of sensing environment variation on the rate 

of change of network energy. We presented an 

analytical framework for a NN- based (Boltzmann-

learning rule) model to calculate the density of ‘awake’ 

nodes in the deployment region to satisfy the reliability 

requirements and accurately model the impact of 

environment variation on node energy. We observed 

that a higher reliability requirement and rapidly 

fluctuating sensing environments increased the rate of 

change of network energy. These results show the 

significance of sensitivity analysis of environment 

modeling on the lifetime of the WSN by creating 

sensing-environment and reliability-centered WSN 

topology. Our future work would involve the 

development of accurate prediction algorithms at the 

BS by modeling the system with a game-theoretic 

approach. The aim of the BS would be minimize the 

prediction error so that it would have to perform fewer 

computations to determine the set of awake nodes for 

the next cycle. Future work would also include 

improvement of this energy model by including lossy 

communication links in the deployment region.  

APPENDIX 

Training phase: Let the total number of nodes in the network 

be NT , where N N NT h b= + , Nh =number of hidden nodes 

and Nb  is the number of visible nodes. In the training phase, 

all nodes are visible. Thus, the number of hidden nodes, L = 

0. Modifying the equation for the weight of a node according 

to the Boltzmann rule from [9] to adapt it to the WSN, we get 

( )wi i i  
+ −

 = − ,            (A.1) 

where 

| |i P s s
j i

    

+ +
=  ,

| |i P s s
j i

    

− −
=  

      (A.2) 

The states of the hidden nodes are denoted by  , 

 =1… 2
L

=1, The states of the visible nodes are 

denoted by , 1 = … 2
K

. 

 P

−

: joint probability that the visible nodes are in 

state  and the hidden nodes are in state  , given that 

the network is in its free-running condition,  

 P

+

: joint probability as above on the states of nodes 

, but for the network in its clamped condition. 
|

s
i

: 

state of node i given that the visible nodes are in state 

 and the hidden nodes are in state  .   is the learning-

rate parameter given by / T = . The weight of a node is 

proportional to the rate of change of battery level at that 

node. From (12), 

( )10
t

w k c eci = − +       (A.3) 

Since 1
| 1 | 1

s s
j i = =  in the training phase i.e., V1, 

( )2 / 4N
Ti

+
 = , i

−
= 0    (A.4) 

( ) ( )1 2 / 40
NT

t
w k c eci  = − + =     (A.5) 

which is only a function of time. 

A similar procedure is adopted for the trained phase.  
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